If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
2-(1/x)-(5/(x^2)) = 0
2-x^-1-5*x^-2 = 0
t_1 = x^-1
2-5*t_1^2-1*t_1^1 = 0
2-5*t_1^2-t_1 = 0
DELTA = (-1)^2-(-5*2*4)
DELTA = 41
DELTA > 0
t_1 = (41^(1/2)+1)/(-5*2) or t_1 = (1-41^(1/2))/(-5*2)
t_1 = (41^(1/2)+1)/(-10) or t_1 = (1-41^(1/2))/(-10)
t_1 = (41^(1/2)+1)/(-10)
x^-1-((41^(1/2)+1)/(-10)) = 0
1*x^-1 = (41^(1/2)+1)/(-10) // : 1
x^-1 = (41^(1/2)+1)/(-10)
-1 < 0
1/(x^1) = (41^(1/2)+1)/(-10) // * x^1
1 = ((41^(1/2)+1)/(-10))*x^1 // : (41^(1/2)+1)/(-10)
-10*(41^(1/2)+1)^-1 = x^1
x = -10*(41^(1/2)+1)^-1
t_1 = (1-41^(1/2))/(-10)
x^-1-((1-41^(1/2))/(-10)) = 0
1*x^-1 = (1-41^(1/2))/(-10) // : 1
x^-1 = (1-41^(1/2))/(-10)
-1 < 0
1/(x^1) = (1-41^(1/2))/(-10) // * x^1
1 = ((1-41^(1/2))/(-10))*x^1 // : (1-41^(1/2))/(-10)
-10*(1-41^(1/2))^-1 = x^1
x = -10*(1-41^(1/2))^-1
x in { -10*(41^(1/2)+1)^-1, -10*(1-41^(1/2))^-1 }
| 18=-5-9/6 | | f(-2)=6x-10 | | -125+4x=43-10x | | xsquared=-100 | | x-1/2=3x-2/6 | | a-5a-a=-7a+5a | | -3(r-4)=-6(1+r) | | 2/3x^2-x=1/3 | | (512x^6)^-1/3 | | 4(2x+3)=2(3x-1) | | 2x/5=-3/8 | | 27-[4+6y-4(y+5)]=-4(3y-6)-[5(y-1)-11y+10] | | 5+4(4b+8)=-5b-5 | | Sin(3y)=1 | | 2x^2-25+100=0 | | 31=1/6m | | 6-b/2=4 | | 36xy+35+42x+30y=0 | | 4(6b+3)=-7(-b+8) | | =3(x+y)+2(x+y)-4x | | 3x^2=7-5x | | 32x^6-2x^2= | | 5x^2=-45 | | 30=6(1-4n) | | 3y-y+4=0 | | 12c^3-8c^2-27c-18=0 | | =5x+y | | 10y=3y+7+6t | | x+6+15=2x-3 | | 5m+13=1 | | 3x^4/x^-2y^3 | | =c^2+4d^2-d^2 |